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On the Numerical Inversion of the
Schwarz-Christoffel Conformal

Transformation

EUGENIO COSTAMAGNA

Abstract —Considering the numerical optimization approach for the

inversion of the Schwarz-Cfrristoffel conformal transformation formula,

some improvements in integration procedures and some topics in optimiza-

tion methods are discussed.

Predictor-corrector techniques are introduced in order to map internaf

lines after the pcdygonaf boundary is transformed these are applied to the

dielectric interface in irshomogeneous line cross seetions, aflowing confor-

maf transformation of quasi-TEM structures by purely nmnericaf methods.

Some examples of computations are presented, and some results are

compared to known analytical calculations.

I. INTRODUCTION

T HE SCHWARZ-CHRISTOFFEL (SC) formula,

which reads [1]–[3]

w(z) =MJ:lfil(c-zi)-~’dt+N (1)

provides a very general technique for mapping the points

on the real axis of the z-plane upon a polygon in the

w-plane, and the upper half z-plane to the region enclosed

by this polygon. In (l), $ is the running variable in the

z-plane, the Zi (i =1, n) are finite points on the real axis

corresponding to the polygon vertices in the w-plane, and

the exponents pi (i= 1, n) are positive or negative real

numbers defining the differences in the angular directions

of the two consecutive w-plane sides confluent in the w,

vertex. The constants M and N may have complex values,

and the lower limit ZOof the integral may be any point in

the upper half plane.

Provided that a suitable algorithm for the inversion of

the SC formula is available, very general conformal map-

ping processes can be performed between different polygo-

nal shapes via an inverse transformation from the original

w-plane to an intermediate z-plane, and then a direct

mapping from this z-plane to a new w ‘-plane, with a new

choice of the Zi points and of the v, exponents.

As analytical inversion cannot be performed for arbi-

trary geometries, numerical approaches have been pro-

posed by various authors [3]–[10], resulting in the solution

by iterative methods of a set of simultaneous, nonlinear

equations relating integrals of the type (1) to the geometri-

cal characteristics of the w-plane polygon. Several prob-
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lems relevant to integration procedures and to optimizat-

ion schemes have been discussed.

In this contribution, a simple improvement in the appli-

cation of Gaussian integration formulas is proposed which

allows one to cope with very large ratios in the lengths of

consecutive z-plane sides. Some topics in optimization

schemes are also discussed. Then, the application of

numerical predictor–corrector techniques to the mapping

of internal lines is presented, in particular, the mapping of

the w-plane air–dielectric interface of inhomogeneous di-

electric, quasi-TEM line structures in the intermediate

z-plane, and then in a new w ‘-plane in parallel-plate

geometry is discussed. The process can be considered a

numerical generalization of the calculations presented in

[11] and [12] for inhomogeneous stripline and rnicrostrip

line structures. As a result, a transformed rectangular

inhomogeneous line cross section is obtained in which, due

to the smoothed shape of the new air-dielectric boundary

line, successive overrelaxation techniques are very applica-

ble. Examples of the method are discussed in the paper.

II. INTEGRATION FORMULAS

Various integration procedures have been proposed for

the integrals in (l), in particular integration by Simpson’s

rules with limits displaced from the vertices when these are

singular points of the integrand function [4]–[6], integra-

tion by Gaussian procedures [7], [8], and by Gaussian

procedures with limits displaced from singularities and

analytical integration in the remaining part [8]. Gauss–

Chebyshev and Gauss–Jacobi quadrature formulas allow

singular vertices to be properly considered, and appear to

be a very good choice in many cases, as suitable accuracy

is provided with short computing times.

The obtainable results can be illustrated by some exam-

ples. In the following, formulas 25.4.30,25.4.37, and 25.4.39
in [13] have been utilized, respectively, for arbitrary inter-

vals and for intervals with p = 0.5 vertices at one end or at

both ends. Order n equal to, respectively, 64, 32, and 64

have been considered (i.e., the same zeros of Legendre

polynomials and the same weight factors for the 25.4.30
and the 25.4.37 formulas). Gauss–Jacobi quadrature have

been performed, computing the n zeros of the Jacobi

polynomials by the routine presented in [14], with n = 48.
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TABLE I

RSSULTS FOR THE GEOMETRY IN FIG. 1

LENGTHOF THE AB ANO BC SIDES IN THE

METUODOF QUADRATURE w-PLANE ANB SIGNIFICANT FIGURE ACCURACY

Am.1ytim.1 ca1c,13t ion 1.

Tem.by. tern , ntegmt ,..

(0.e term retained) +

Simpson twle; .3 . 1/30;

.=61 1.0022 3

As above, but two terms

ret,, ned 1.000048 5

Gauss?%. formula (n = 32) 0.99999999999991 13

TABLE II
RESULTS FOR THE GEOMETRY IN FIG. 2

LENGTHSOF THE A8 AND BC SIDES IN THE

METHOOOF QUADRATURF w-PLANE AND SIGNIFICANT FIGURE ACCURACIES

AB BC

Ana.lyt, ml calculation 1.570796326794897 1.831780823064823

Term-by-t,?. , ntegrat ,0.

(t.. term, reta, ned) +

S>nmso” ,“1!?; a . 1,30;

.=61 1.57088 4 1.8408 ?

,$ above, but 6 = 1/100,

..91 1.5714 3 1.8338 3

6s above, but a = 1/100,

m - 501 1.5707’987 6 1.8324 3

G,,,,,,” formula,

(n= 32 and n = 64) 1.570796326794897 16 1.831780823064738 13

In Tables I and II, some data on the accuracy provided

by Gaussian formulas for the geometries in Figs. 1 and 2

/are shown with reference to analytical calculations. This

accuracy compares very favorably with the results pro-

vided by Simpson’s rule with the number of points speci-

fied by the parameter m and with term-by-term integra-

tion near the p = 0.5 vertices over the small part of the

whole interval specified by the parameter a.

The geometry in Fig. 2 can be considered as half of a

triplate stripline structure: the capacitance and the char-

acteristic impedance can be derived by mapping the z-axis

in Fig. 2 onto a rectangle, after removal of the p = – 1

vertex at z = O. In the usual impedance range of about 50

Q (in air), the overall numerical process provides capaci-

tance and impedance values to 12 significant figures with

reference to the well-known analytical calculations by el-

liptic integrals.

In a recent paper [15], a large number of transmission

lines formed by regular polygonal coaxial inner and outer

conductors have been considered, and the two-dimensional

geometrical resistances of the partial regions obtained by

dividing the cross section in symmetrical parts have been

computed by analytical conformal mapping. The numerical

inversion (with the simple optimization procedure de-

scribed in the next paragraph), followed by a direct trans-

formation into a rectangular geometry has been applied to

the same cross sections, utilizing the quoted Gauss–Jacobi

procedures to cope with the various p values at the vertices.

In all cases [15, figs. 1-6], accuracies of eight to 10

significant figures have been obtained.

Good results have been obtained also by the double

B

w-plane
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Fig. 1. A simple transformation problem for accuracy tests.
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Fig. 2. Transformation problem with five vertices for accuracy tests

exponential formula [16], although with smaller numbers

of significant figures, pro~bly due to a nonoptirnized

implementation of the algorithm.

In all the preceding examples, values of the order of 102

or, very seldom, 103 are not exceeded in the ratios between

adjacent sides mapped on the real axis of the z-plane.

Unfortunately, in many practical cases, very large ratios,

of the order of 105 or more, have to be faced during the

inversion process, and vertices with positive p can result to

be very close to the ends of relatively long sides. This

causes severe loss of accuracy, as the Gaussian integration

formulas are rather sensitive to the proximity of singular

points to the ends of the integration interval. The problem

can be illustrated by some representative cases in which

numerical computations have been performed by the

quoted formulas in [13], and analytical calculations can

again provide reference values.

In Fig. 3, some integrand functions are specified by the

pertinent sets of z, points and p, exponents and by a

sketch of the modulus; the areas corresponding to the

integrals to be evaluated are shadowed. Indicating by 8 the

distance of the external singular point from the end of the

integration interval, the analytical expressions are:

for type 1 (2)

I
1–8 dz

, k2=l–~
o /(z-l) (z-k2)

for type 2 (3)

1The author wishes to thank an unknown reviewer for pointing out the

paramount importance of utilizing in these examples an afgorithm well
matched to the actual geometries, and for drawing to his attention the

study reported in [16].
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I iml 1

Fig. 3. Some integrals, and the moduli of the integrand functions.

and

J
1 dz

, k2=0.5
k’+~ (z–l)(z–k2)

for type 3 (4)

/

1–8 Z dz

o /(z2-1)(’2-kz) ‘ k=l-a

for type 4 (5)

J
1–8 dz

k=l– S
–1+8 (z2–l)(z2–k2) ‘

for type 5. (6)

The errors are plotted in Fig. 4 as a function of the ratio

between the distance 8 and the length 1 of the integration

interval: when this ratio is smaller than about 10-3 or

10-2, depending on the particular function, the relative

errors exceed 10-5.

A good solution to this problem has been found by

dividing the integration interval in two parts with a suit-

able length ratio, as shown for a left end in Fig, 5, and

performing separate integrations on these parts. The end

of the old integration interval, if the corresponding p is

positive, becomes an external singular point for the new
interval not ending in it (the right-hand side in Fig. 5).
Nevertheless, by selecting a length ratio of the order of

@/l, both the intervals obtained by the partition are

allowed a ratio between the distance of the external singu-

lar point and the length of the integration interval larger

than 8/1, and of the order of ~.

In the whole range of Fig. 4, accuracies of six to 12

,00 .,

a
o~
.
.\~

,..,

,..2

,..,

,..4

,0-5_-
,~., fo- lo- I!1o“

DISTANCE OF THE SING. POINTJINTEG. LENGTH

Fig. 4. Percent errors in coqputing the integrals in Fig. 3 by Gaussian
formulas, as a function of the position of an external singular point.

Fig. 5. Partitioning the integration interval.

significant figures have been provided by partitioning the

integration interval in this way with partial lengths in a

ratio of 1 to 100, and four to six significant figure accuracy

by partitioning according to a ratio of 1 to 1000, depend-

ing on the type of integral.

Using this technique, 8/1 ratios of the order of 10-6

have been easily handled, and the quadrature procedure is

still very fast. For instance, the triplate geometry in Fig. 2

for a characteristic impedance of about 30 0 leads to

z-plane ratios of about 103 to 104 and to impedance

errors, using the simple process, of about 0.5 to 4.5 per-

cent. Using the partition technique, the errors are reduced

to less than 0.001 percent.

To cope with greater ratios, partition into three parts

has been successfully utilized with partial lengths in a

1:102:104 relationship. Of course, partition is only one of

the possible measures: double exponential formulas [16]

seem to be very interesting as they lead to clustering of
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sampling points near the ends of the integration interval

and to a rather insensitive behavior in the presence of

singularities close to the ends.

III. OPTIMIZATION PROCEDURES

Various optimization schemes have been applied to the

numerical inversion, including the Powell [6] and Peckham

[7] methods, variations of the false position and other

simple algorithms for problems with a small number of

equations [8], [9], and a modified Hooke and Jeeves method

for more difficult cases [10]. In general, direct search

strategies have been recommended, as gradient techniques

appear to be unsuitable due to difficulties in computing

accurate derivatives in the w-plane.

It is interesting to note that very good results have been

obtained in a large number of cases, including the exam-

ples discussed in the previous and in the following para-

graphs, by a relatively simple algorithm introduced by

Maltese [17].

Considering the polygon sides, at any optimization itera-

tion the actual z, – Zi. ~ distances are multiplied by the

ratios between the wanted and the corresponding actual

w i – w i_ ~ distances. The process is ended when a simple

objective function, obtained by lowering by one the above

ratios and summing up the absolute values of the results, is

reduced to a specified value or when a new iteration leads

to an increased instead than lowered error. The ratios can

be raised to some power, normally between 0.5 and 3, to

slow or to accelerate convergence. A low exponent nor-

mally allows reaching more accurate results and is recom-

mended during the starting iterations. As only information

from the corresponding w-plane side is considered in opti-

mizing any z-plane side length, the procedure appears to

be similar to the one-at-a-time procedure introduced in [3].

The algorithm has been found effective with respect to

the accuracy and stability of the results provided by the

quadrature routines. No gradient computations are needed

and the correct order of the vertices along the real z-plane

axis is implicitly preserved during the process. Invariance

of the results within 10 – 8 or better (relative figures) is

normally reached after some 50 to a few hundred itera-

tions, and this seems to be of the same order of the

number of objective function evaluations reported for more

elaborate strategies [6], [7]. In the simple cases considered

in [8], accuracies of the same order have been obtained in

about 50 iterations in analysis problems.
The partition technique has been proved very useful in

rendering the numerical inversion process a general-pur-

pose and reliable design tool, without necessity of exces-

sive care in exploiting any geometrical or physical peculiar-

ity of the actual problem. For instance, no diligence is

needed in avoiding unnecessarily high ratios in the w-plane

side lengths, nor in performing residue evaluations in the

case of w-plane sides meeting at infinity [3]. A favorable

choice of the relative positions of the transformed vertices

along the real z-plane axis can be very important. In some

cases [2], as in the conformal transformation of polygons

without vertices at infinity, after the relative positions have

been settled, three z-plane points (i.e., a third point in

addition to ZI and z., which are normally placed at the

– 1 and + 1 normalized abscissas) can still be chosen to

correspond to an arbitrary w-plane polygon boundary

point. This possibility has been proved useful in order to

avoid clustering of z-plane vertices, thereby reducing accu-

racy problems.

The numerical optimization processes, due to the com-

puter time and to the inherent complexity, are more useful

in cases where no simpler computing methods are avail-

able. This means that no simple ways to ascertain the

obtained accuracy are available. Therefore, it is advisable

when possible to perform the inverse transformation start-

ing from different conditions and to compare the results.

IV. MAPPING W-PLANE PATTERNS

When the positions of the z, points have been de-

termined by the inversion procedure, any w-plane pattern

can be mapped into the z-plane. In particular, internal

lines of the original polygon can be mapped by applying in

the complex plane the techniques described in [18] (and

something similar was foreshadowed

can be described by the equation

Az 1

Aw = ~(Z)

in [3]). The problem

(7)

where Az and A w are the corresponding z-plane and

w-plane displacements, and F(z) is the integrand function

in (l).

A single-step predictor–corrector method has been

utilized. At the step k, the new z-plane position ?~+ ~ is

predicted by the Euler algorithm

1—

2~+l=z~+Aw F(zk)
(8)

and corrected by the Heun algorithm

[

Aw 1 1
—+ 1‘k+l=zk+YF(.zk)F(Ek+l)“ (9)

A correction loop of no more than five iterations has

been shown adequate. In simple cases, no large differences

have been found in the results of two to 10 iteration loops.

The number of steps was more important, and in some

cases the error in the position of the final point has been

lowered by more than an order of magnitude by changing

from 100 to 500 steps.

The mapping procedure can be started from any w-plane

point, provided that the position of the corresponding

z-plane point is given. When the w-plane starting point lies

on a side of the polygon, this position has been determined

by standard Newton–Raphson or bisection techniques,

performing length calculations by the Gaussian quadrature

routines. Starting from a polygon vertex (with O < p < 1),

the first Az has been determined by considering the Guil-

lemin’s series representation of (1) [1], and retaining the

first-order term.

When remapping the obtained z-plane pattern into a

new w ‘-plane, the Heun algorithm can be simply applied

as the next z-plane point is already known in this case.
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In many cases derived from simple stripline and micro-

strip geometries, in particular in mapping air-dielectric

interfaces, the positional errors in the z-plane or w ‘-plane

pattern ending points have been of the order of 10-3 or

10-2 with respect to the total pattern length. In the case of

more complicated geometries, e.g., coupled rnicrostrips or

similar, typical results have shown errors in length and in

direction in the last part of the z-plane and w ‘-plane

patterns when the aimed end point was a z-plane singular

point. In many cases, however, the companion maps ob-

tained starting from the opposite ends of a given w-plane

pattern have shown good overlapping, even if no perfect

point-to-point agreement was obtained.

The numerical mapping of internal lines seems to be

very dependent on accurate positioning of the z-plane

vertices: as typical consequence of high ratios between the

lengths of consecutive z-plane sides, superimposed w-plane

patterns starting from opposite ends can result in “ paral-

lel” w ‘-plane maps, and partition of the integration inter-

val in three parts (a singular point very close to one end)

or in five parts (two singular points very close to both

ends) has sometimes been necessary to recover good pat-

tern coincidence.

In conclusion, as the examples will show, the numerical

mapping techniques seem to be highly suitable for interac-

tive computer-aided design operations, although not suit-

able for fully automatic procedures.

V. INHOMOGENEOUS DIELECTRIC EXAMPLES

Mapping dielectric interfaces together with the outer

boundary in a parallel-plate configuration normally leads

to smoothed inhomogeneous line structures in which dis-

crete approximation methods and in particular successive

overrelaxation (SOR) techniques can provide accurate

evaluations of the quasi-TEM characteristics with limited

computation effort. This has been done by analytical inter-

face mapping in [11] and [12], and can be performed by a

purely numerical procedure when analytical methods are

not available.

The six to seven figure characteristic impedance and

effective permittivity data presented in [12, tables II and

111] permit an appreciation of the accuracy of the results

obtained for the same microstrip line structures by predic-

tor–corrector techniques followed by SOR procedures [19]

based on square grids of about 100x 70 to 100x 20 nodal

points. The quoted tables refer to different values of the

relative permittivity c,. In the whole considered range of

line dimensions (except in the last two cases, related to

very large strips), differences in impedance values of about

0.1 to 0.4 percent with differences in effective relative

permittivity of about 0.2 to 0.6 percent have been obtained

for C,= 4.2, and differences in impedance values of about

0.2 to 0.8 percent with differences in effective relative

permittivity of about 0.5 to 1.7 percent have been obtained

for c,= 51: the results of the whole process seem to be well

suited for computer-aided design purposes.

The inhomogeneous dielectric coplanar waveguide with

lower ground plane can provide further examples. No

exact calculations are known for this structure, but some

w- plane

tm

co

(a)
z-plane

AOCDKF G

-t +1 ‘
(b)

w,- plane

HG F!S D

A B c
,.,
(~)

Fig. 6. A coplanar waveguide with lower ground plane structure in
inhomogeneous dielectric, and a related inverse SC transformation
problem.

results derived in [20] by a very good approximate confor-

mal mapping technique leading to analytical computations

can supply comparison data. The structure is shown in Fig.

6(a) where the geometry considered for the numerical

conformal mapping is superimposed. Continuous lines in-

dicate electric walls, dotted lines magnetic walls.

In [20] a magnetic wall was assumed at the air-dielectric

interface. In the present calculations this approximation

has been avoided, and the geometry of Fig. 6(a) first

mapped via the optimization technique into the z-plane of

Fig. 6(b), and then by direct SC transformation into the

rectangular geometry of Fig. 6(c).

Sufficient distance between the vertices F and G to

obtain a negligible distance between the points in the

w ‘-plane corresponding to the vertices E and F (negligible

dielectric flux on the EF side) has been assumed, and

square grids of about 100X 80 to 100X 20 nodal points

have been adopted in the SOR process. Some final results

for characteristic impedances and effective relative permit-

tivities are shown in Figs. 7 and 8, together with reference

curves derived from the results published in [20] (the

substrate permittivit y is c,= 10): the agreement between

the results provided by the different computation tech-

niques is very good. Only in the region of large gaps and

thin substrates are some discrepancies noticeable, espe-

cially in the effective permittivities, probably due to some

deficiency of the magnetic wall assumption in [20].

It should be noted that in some cases (low right side in

Fig. 7) partition techniques in the Gaussian integration

have been necessary due to the relatively wide inner strip,

and in many cases if partition techniques are not adopted

considerable care is necessary in selecting a w-plane FG

distance suitable for obtaining negligible dielectric flux on

the EF side and still secure sufficiently low z-plane side
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dard Gaussian formulas was performed by Maltese and

the author in 1970–1971. Very useful observations on the

argument by Dr. S. B. Cohn and very valuable suggestions

by the reviewers of the manuscript are gratefully acknowl-

edged. The author wishes to thank the Technical Director

of Marconi Italiana for permission to publish this paper.
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