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On the Numerical Inversion of the
Schwarz- Christoffel Conformal
Transformation

EUGENIO COSTAMAGNA

Abstract —Considering the numerical optimization approach for the
inversion of the Schwarz~Christoffel conformal transformation formula,
some improvements in integration procedures and some topics in optimiza-
tion methods are discussed.

Predictor-corrector techniques are introduced in order to map internal
lines after the polygonal boundary is transformed; these are applied to the
dielectric interface in inhomogeneous line cross sections, allowing confor-
mal transformation of quasi-TEM structures by purely numerical methods.
Some examples of computations are presented, and some results are
compared to known analytical calculations.

I. INTRODUCTION

HE SCHWARZ-CHRISTOFFEL (SC) formula,
which reads [1]-[3]

w(z) = an(g—z) M dE+ N (1)
zyi=1

provides a very general technique for mapping the points
on the real axis of the z-plane upon a polygon in the
w-plane, and the upper half z-plane to the region enclosed
by this polygon. In (1), £ is the running variable in the
z-plane, the z; (i =1, n) are finite points on the real axis
corresponding to the polygon vertices in the w-plane, and
the exponents p, (i=1,n) are positive or negative real
numbers defining the differences in the angular directions
of the two consecutive w-plane sides confluent in the w,
vertex. The constants M and N may have complex values,
and the lower limit z,, of the integral may be any point in
the upper half plane.

Provided that a suitable algorithm for the inversion of
the SC formula is available, very general conformal map-
ping processes can be performed between different polygo-
nal shapes via an inverse transformation from the original
w-plane to an intermediate z-plane, and then a direct
mapping from this z-plane to a new w’-plane, with a new
choice of the z; points and of the p, exponents.

As analytical inversion cannot be performed for arbi-
trary geometries, numerical approaches have been pro-
posed by various authors [3]-{10], resulting in the solution
by iterative methods of a set of simultaneous, nonlinear
equations relating integrals of the type (1) to the geometri-
cal characteristics of the w-plane polygon. Several prob-
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lems relevant to integration procedures and to optimiza-
tion schemes have been discussed.

In this contribution, a simple improvement in the appli-
cation of Gaussian integration formulas is proposed which
allows one to cope with very large ratios in the lengths of
consecutive z-plane sides. Some topics in optimization
schemes are also discussed. Then, the application of
numerical predictor—corrector techniques to the mapping
of internal lines is presented, in particular, the mapping of
the w-plane air—dielectric interface of inhomogeneous di-
electric, quasi-TEM line structures in the intermediate
z-plane, and then in a new w’-plane in parallel-plate
geometry is discussed. The process can be considered a
numerical generalization of the calculations presented in
[11] and [12] for inhomogeneous stripline and microstrip
line structures. As a result, a transformed rectangular
inhomogeneous line cross section is obtained in which, due
to the smoothed shape of the new air—dielectric boundary
line, successive overrelaxation techniques are very applica-
ble. Examples of the method are discussed in the paper.

II. INTEGRATION FORMULAS

Various integration procedures have been proposed for
the integrals in (1), in particular integration by Simpson’s
rules with limits displaced from the vertices when these are
singular points of the integrand function [4]-[6], integra-
tion by Gaussian procedures [7], [8], and by Gaussian
procedures with limits displaced from singularities and
analytical integration in the remaining part [8]. Gauss-
Chebyshev and Gauss—Jacobi quadrature formulas allow
singular vertices to be properly considered, and appear to
be a very good choice in many cases, as suitable accuracy
is provided with short computing times.

The obtainable results can be illustrated by some exam-
ples. In the followmg, formulas 25.4.30, 25.4.37, and 25.4.39
in [13] have been utilized, respectively, for arbitrary inter-
vals and for intervals with g = 0.5 vertices at one end or at
both ends. Order n equal to, respectively, 64, 32, and 64
have been considered (i.e., the same zeros of Legendre
polynomials and the same weight factors for the 25.4.30
and the 25.4.37 formulas). Gauss—Jacobi quadratures have
been performed, computing the n zeros of the Jacobi
polynomials by the routine presented in [14], with n = 48.
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TABLE I
RESULTS FOR THE GEOMETRY IN FIG. 1

LENGTH OF THE AB AND BC SIDES IN THE
METHOD OF QUADRATURE w-PLANE AND SIGNIFICANT FIGURE ACCURACY
Analytical calculation 1.

Term-by-term integration
{one term retained) +
Simpson rule; a = 1/30;

m = 61 1.0022 3
As above, but two terms
retained 1.000048 5
Gaussian formula (n = 32) 0.99999999999991 13
TABLE II
RESULTS FOR THE GEOMETRY IN FiG. 2
LENGTHS OF THE AB AND BC SIDES IN THE
METHOD OF QUADRATURE w-PLANE AND STGNIFICANT FIGURE ACCURACIES
AB BC
Analytical calculation 1.570796326794897 1.831780823064823
Term-by-term 1ntegration
{two terms retained) +
Sampson rule; a = 1/30;
m = 61 1.57088 4 | 1.8408 2
as above, but a = 1/100,
m =91 1.5714 3 11.8338 3
as above, but a = 1/100,
m = 501 1.5707987 6 |1.8324 3
Gaussian formulas
(n =32 and n = 64) 1.570796326794897 16 | 1.831780823064738 13

In Tables I and 11, some data on the accuracy provided
by Gaussian formulas for the geometries in Figs. 1 and 2
are shown with reference to analytical calculations./ This
accuracy compares very favorably with the results pro-
vided by Simpson’s rule with the number of points speci-
fied by the parameter m and with term-by-term integra-
tion near the p=0.5 vertices over the small part of the
whole interval specified by the parameter a.

The geometry in Fig. 2 can be considered as half of a
triplate stripline structure: the capacitance and the char-
acteristic impedance can be derived by mapping the z-axis
in Fig. 2 onto a rectangle, after removal of the p=~—1
vertex at z = 0. In the usual impedance range of about 50
{ (in air), the overall numerical process provides capaci-
tance and impedance values to 12 significant figures with
reference to the well-known analytical calculations by el-
liptic integrals.

In a recent paper [15], a large number of transmission
lines formed by regular polygonal coaxial inner and outer
conductors have been considered, and the two-dimensional
geometrical resistances of the partial regions obtained by
dividing the cross section in symmetrical parts have been
computed by analytical conformal mapping. The numerical
inversion (with the simple optimization procedure de-
scribed in the next paragraph), followed by a direct trans-
formation into a rectangular geometry has been applied to
the same cross sections, utilizing the quoted Gauss—Jacobi
procedures to cope with the various p values at the vertices.
In all cases [15, figs. 1-6], accuracies of eight to 10
significant figures have been obtained.

Good results have been obtained also by the double

B
w-plane
-00 €« A|C > 400
z-plane
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-1 0 +1
u=.5 u=-1 u=.5
Fig. 1. A simple transformation problem for accuracy tests.
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Fig. 2. Transformation problem with five vertices for accuracy tests.

exponential formula [16], although with smaller numbers
of significant figures, probably due to a nonoptimized
implementation of the algorithm?.

In all the preceding examples, values of the order of 10?2
or, very seldom, 103 are not exceeded in the ratios between
adjacent sides mapped on the real axis of the z-plane.
Unfortunately, in many practical cases, very large ratios,
of the order of 10° or more, have to be faced during the
inversion process, and vertices with positive g can result to
be very close to the ends of relatively long sides. This
causes severe loss of accuracy, as the Gaussian integration
formulas are rather sensitive to the proximity of singular
points to the ends of the integration interval. The problem
can be illustrated by some representative cases in which
numerical computations have been performed by the
quoted formulas in [13], and analytical calculations can
again provide reference values.

In Fig. 3, some integrand functions are specified by the
pertinent sets of z, points and p, exponents and by a
sketch of the modulus; the areas corresponding to the
integrals to be evaluated are shadowed. Indicating by 8 the
distance of the external singular point from the end of the
integration interval, the analytical expressions are:

/1—8 dz
0 Vi—:z
fortype1 (2)
1-5 dz
i . k=1
o Y(z-1(z—-k?)

for type2  (3)

! The author wishes to thank an unknown reviewer for pointing out the
paramount importance of utilizing in these examples an algorithm well
matched to the actual geometries, and for drawing to his attention the
study reported in [16].
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Fig. 3. Some integrals, and the moduli of the integrand functions.

and
dz
fl , k2=0.5
k+8\(z=1)(z-k?)
for type 3 (4)
1-8 zdz
f , k=1-9
o J(22-1)(22-k?)
for type 4 (5)
1-8 dz
f k=1-8

o,
for type 5. (6)

The errors are plotted in Fig. 4 as a function of the ratio
between the distance § and the length / of the integration
interval: when this ratio is smaller than about 10~° or
1072, depending on the particular function, the relative
errors exceed 1073,

A good solution to this problem has been found by
dividing the integration interval in two parts with a suit-
able length ratio, as shown for a left end in Fig. 5, and
performing separate integrations on these parts. The end
of the old integration interval, if the corresponding g is
positive, becomes an external singular point for the new
interval not ending in it (the right-hand side in Fig. 5).
Nevertheless, by selecting a length ratio of the order of
V8l /1, both the intervals obtained by the partition are
allowed a ratio between the distance of the external singu-
lar point and the length of the integration interval larger
than 8 /1, and of the order of \/m .

In the whole range of Fig. 4, accuracies of six to 12
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Fig. 4. Percent errors in computing the integrals in Fig. 3 by Gaussian
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Fig. 5. Partitioning the integration interval.

significant figures have been provided by partitioning the
integration interval in this way with partial lengths in a
ratio of 1 to 100, and four to six significant figure accuracy
by partitioning according to a ratio of 1 to 1000, depend-
ing on the type of integral.

Using this technique, 8// ratios of the order of 10~°
have been easily handled, and the quadrature procedure is
still very fast. For instance, the triplate geometry in Fig. 2
for a characteristic impedance of about 30 @ leads to
z-plane ratios of about 103 to 10* and to impedance
errors, using the simple process, of about 0.5 to 4.5 per-
cent. Using the partition technique, the errors are reduced
to less than 0.001 percent.

To cope with greater ratios, partition into three parts
has been successfully utilized with partial lengths in a
1:102:10* relationship. Of course, partition is only one of
the possible measures: double exponential formulas [16]
seem to be very interesting as they lead to clustering of
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sampling points near the ends of the integration interval
and to a rather insensitive behavior in the presence of
singularities close to the ends.

III. OPTIMIZATION PROCEDURES

Various optimization schémes have been applied to the
numerical inversion, including the Powell [6] and Peckham
[7] methods, variations of the false position and other
simple algorithms for problems with a small number of
equations [8], [9], and a modified Hooke and Jeeves method
for more difficult cases [10]. In general, direct search
strategies have been recommended, as gradient techniques
appear to be unsuitable due to difficulties in computing
accurate derivatives in the w-plane.

It is interesting to note that very good results have been
obtained in a large number of cases, including the exam-
ples discussed in the previous and in the following para-
graphs, by a relatively simple algorithm introduced by
Maltese [17].

Considering the polygon sides, at any optimization itera-
tion the actual z,—z,_; distances are multiplied by the
ratios between the wanted and the corresponding actual
w; —w,_, distances. The process is ended when a simple
objective function, obtained by lowering by one the above
ratios and summing up the absolute values of the results, is
reduced to a specified value or when a new iteration leads
to an increased instead than lowered error. The ratios can
be raised to some power, normally between 0.5 and 3, to
slow or to accelerate convergence. A low exponent nor-
mally allows reaching more accurate results and is recom-
mended during the starting iterations. As only information
from the corresponding w-plane side is considered in opti-
mizing any z-plane side length, the procedure appears to
be similar to the one-at-a-time procedure introduced in [3].

The algorithm has been found effective with respect to
the accuracy and stability of the results provided by the
quadrature routines. No gradient computations are needed
and the correct order of the vertices along the real z-plane
axis is implicitly preserved during the process. Invariance
of the results within 1073 or better (relative figures) is
normally reached after some 50 to a few hundred itera-
tions, and this seems to be of the same order of the
number of objective function evaluations reported for more
elaborate strategies [6], [7]. In the simple cases considered
in [8], accuracies of the same order have been obtained in
about 50 iterations in analysis problems.

The partition technique has been proved very useful in
rendering the numerical inversion process a general-pur-
pose and reliable design tool, without necessity of exces-
sive care in exploiting any geometrical or physical peculiar-
ity of the actual problem. For instance, no diligence is
needed in avoiding unnecessarily high ratios in the w-plane
side lengths, nor in performing residue evaluations in the
case of w-plane sides meeting at infinity [3]. A favorable
choice of the relative positions of the transformed vertices
along the real z-plane axis can be very important. In some
cases [2], as in the conformal transformation of polygons
without vertices at infinity, after the relative positions have
been settled, three z-plane points (i.e., a third point in

addition to z; and z,, which are normally placed at the
—1 and +1 normalized abscissas) can still be chosen to
correspond to an arbitrary w-plane polygon boundary
point. This possibility has been proved useful in order to
avoid clustering of z-plane vertices, thereby reducing accu-
racy problems.

The numerical optimization processes, due to the com-
puter time and to the inherent complexity, are more useful
in cases where no simpler computing methods are avail-
able. This means that no simple ways to ascertain the
obtained accuracy are available. Therefore, it is advisable
when possible to perform the inverse transformation start-
ing from different conditions and to compare the results.

IV. MAPPING w-PLANE PATTERNS

When the positions of the z, points have been de-
termined by the inversion procedure, any w-plane pattern
can be mapped into the z-plane. In particular, internal
lines of the original polygon can be mapped by applying in
the complex plane the techniques described in [18] (and
something similar was foreshadowed in [3]). The problem
can be described by the equation

Az 1
a  F2) ™M

where Az and Aw are the corresponding z-plane and
w-plane displacements, and F(z) is the integrand function
in (1).

A single-step predictor—corrector method has been
utilized. At the step k, the new z-plane position Z, ., is
predicted by the Euler algorithm

1
Zk+1=zk+AW@ (8)
and corrected by the Heun algorithm
_ _ Aw| 1 1
e TR [F(zk) T F(G) ] ©)

A correction loop of no more than five iterations has
been shown adequate. In simple cases, no large differences
have been found in the results of two to 10 iteration loops.
The number of steps was more important, and in some
cases the error in the position of the final point has been
lowered by more than an order of magnitude by changing
from 100 to 500 steps.

The mapping procedure can be started from any w-plane
point, provided that the position of the corresponding
z-plane point is given. When the w-plane starting point lies
on a side of the polygon, this position has been determined
by standard Newton—Raphson or bisection techniques,
performing length calculations by the Gaussian quadrature
routines. Starting from a polygon vertex (with 0 < yu <1),
the first Az has been determined by considering the Guil-
lemin’s series representation of (1) [1], and retaining the
first-order term.

When remapping the obtained z-plane pattern into a
new w’-plane, the Heun algorithm can be simply applied
as the next z-plane point is already known in this case.
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In many cases derived from simple stripline and micro-
strip geometries, in particular in mapping air-dielectric
interfaces, the positional errors in the z-plane or w’-plane
pattern ending points have been of the order of 10~* or
10~2 with respect to the total pattern length. In the case of
more complicated geometries, €.g., coupled microstrips or
similar, typical results have shown errors in length and in
direction in the last part of the z-plane and w’-plane
patterns when the aimed end point was a z-plane singular
point. In many cases, however, the companion maps ob-
tained starting from the opposite ends of a given w-plane
pattern have shown good overlapping, even if no perfect
point-to-point agreement was obtained.

The numerical mapping of internal lines seems to be
very dependent on accurate positioning of the z-plane
vertices: as typical consequence of high ratios between the
Iengths of consecutive z-plane sides, superimposed w-plane
patterns starting from opposite ends can result in “paral-
lel” w’-plane maps, and partition of the integration inter-
val in three parts (a singular point very close to one end)
or in five parts (two singular points very close to both
ends) has sometimes been necessary to recover good pat-
tern coincidence.

In conclusion, as the examples will show, the numerical
mapping techniques seem to be highly suitable for interac-
tive computer-aided design operations, although not suit-
able for fully automatic procedures.

V. INHOMOGENEOUS DIELECTRIC EXAMPLES

Mapping dielectric interfaces together with the outer
boundary in a parallel-plate configuration normally leads
to smoothed inhomogeneous line structures in which dis-
crete approximation methods and in particular successive
overrelaxation (SOR) techniques can provide accurate
evaluations of the quasi-TEM characteristics with limited
computation effort. This has been done by analytical inter-
face mapping in [11] and [12], and can be performed by a
purely numerical procedure when analytical methods are
not available.

The six to seven figure characteristic impedance and
effective permittivity data presented in {12, tables II and
II1] permit an appreciation of the accuracy of the results
obtained for the same microstrip line structures by predic-
tor—corrector techniques followed by SOR procedures [19]
based on square grids of about 100X 70 to 100X 20 nodal
points. The quoted tables refer to different values of the
relative permittivity ¢,. In the whole considered range of
line dimensions (except in the last two cases, related to
very large strips), differences in impedance values of about
0.1 to 0.4 percent with differences in effective relative
permittivity of about 0.2 to 0.6 percent have been obtained
for €, =4.2, and differences in impedance values of about
0.2 to 0.8 percent with differences in effective relative
permittivity of about 0.5 to 1.7 percent have been obtained
for €, = 51: the results of the whole process seem to be well
suited for computer-aided design purposes.

The inhomogeneous dielectric coplanar waveguide with
lower ground plane can provide further examples. No
exact calculations are known for this structure, but some
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Fig. 6. A coplanar waveguide with lower ground plane structure in
inhomogeneous dielectric, and a related inverse SC transformation
problem.

results derived in [20] by a very good approximate confor-
mal mapping technique leading to analytical computations .
can supply comparison data. The structure is shown in Fig.
6(a) where the geometry considered for the numerical
conformal mapping is superimposed. Continuous lines in-
dicate electric walls, dotted lines magnetic walls.

In [20] a magnetic wall was assumed at the air-dielectric
interface. In the present calculations this approximation
has been avoided, and the geometry of Fig. 6(a) first
mapped via the optimization technique into the z-plane of
Fig. 6(b), and then by direct SC transformation into the
rectangular geometry of Fig. 6(c).

Sufficient distance between the vertices F and G to
obtain a negligible distance between the points in the
w’-plane corresponding to the vertices E and F (negligible
dielectric flux on the EF side) has been assumed, and
square grids of about 100X80 to 100X20 nodal points
have been adopted in the SOR process. Some final results
for characteristic impedances and effective relative permit-
tivities are shown in Figs. 7 and 8, together with reference
curves derived from the results published in [20} (the
substrate permittivity is €, =10): the agreement between
the results provided by the different computation tech-
niques is very good. Only in the region of large gaps and
thin substrates are some discrepancies noticeable, espe-
cially in the effective permittivities, probably due to some
deficiency of the magnetic wall assumption in [20].

1t should be noted that in some cases (low right side in
Fig. 7) partition techniques in the Gaussian integration
have been necessary due to the relatively wide inner strip,
and in many cases if partition techniques are not adopted
considerable care is necessary in selecting a w-plane FG
distance suitable for obtaining negligible dielectric flux on
the EF side and still secure sufficiently low z-plane side
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Fig. 7. Some results from numerical inversion of the SC transformation
for the characteristic impedance of the structure in Fig. 6, shown as dots
and compared with curves derived from [20].
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Fig. 8. Some results from numerical inversion of the SC transformation
for the effective relative permittivity of the structure in Fig. 6, shown as
dots and compared with curves derived from [20].

ratios. Partition techniques on the other hand lead in any
case to good w’-plane dimensions and mapped interface
patterns without any care in w-plane dimension selection.

VI. CONCLUSIONS

Numerical optimization methods for the inversion of the
Schwarz-Christoffel formula have been considered, and
simple interval partition techniques have been suggested to
cope with singular vertices very close to the ends of any
integration interval in the transformed real axis. Such
vertices have been recognized as a major cause of inaccu-
rate results with traditional quadrature procedures.

Numerical predictor—corrector techniques have been
proposed for line mapping, and some examples of trans-
formation of the dielectric interface and evaluation of the
quasi-TEM characteristics in inhomogeneous structures
have been discussed.

Partition techniques, simple optimization procedures,
and numerical mapping of dielectric interfaces allow con-
formal transformations of inhomogeneous transmission line
geometries with accuracy suitable for computer-aided de-
sign and acceptable operator skill.
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